The Syntax of ʔiˈða al-fudʒa:ʔiːja ‘If of Surprise’ in Classical Arabic

Saleem Abdelhady
American University of the Middle East, Kuwait

Abstract—This scholarly investigation deals with the intricacies surrounding the syntactical nature of the phenomenon known as “If of Surprise” in the context of Classical Arabic, employing a methodological lens derived from the Minimalist framework. The “If of Surprise” construct represents a unique form of expression that incorporates a particle phonetically resembling the conditional particle “if” in Classical Arabic, yet its underlying structure diverges from establishing genuine conditional relationships. By employing the analytical tools provided by the Minimalist Program, this study scrutinizes the data associated with “If of Surprise” constructions, utilizing several syntactic diagnostics to uncover their distinctive characteristics. The findings of this study unequivocally demonstrate that “If of Surprise” exhibits remarkable traits that set it apart from conventional syntactic patterns. By shedding light on the mechanisms through which these projections operate, the study provides a comprehensive understanding of the sudden interpretive nature exhibited by “If of Surprise.” By delving into the intricacies of its syntactic structure and exploring the role of Speech Act Projections, this research contributes to the broader field of linguistic inquiry and aids in unraveling the complexities inherent in the syntax of Classical Arabic.

Index Terms—particles, syntax, The Minimalist Program, small clauses

I. INTRODUCTION

In Classical Arabic, speakers form conditional structures using particles such as ʔɪˈða ‘if’ and law ‘if.’ At their surface level, these particles seem to create only conditional constructions.

1) ʔɪˈða ʤalʔa ʔaliyy-un qull-i.
 If came Ali-NOM tell-3SG.ACC
 ‘If Ali comes, tell me.’

2) law ʤalʔa ʔaliyy-un l-raqaytu-hu.
 if came Ali-NOM to-see-3SG.ACC
 ‘If Ali came, I should have seen him.’

However, the use of the ʔɪˈða ‘if’ particle involves a level of opacity. The particle may depart from its conditional function; speakers may deploy the particle to indicate a sudden realization of an action. Consider the following examples.

3) laaqaj-tu zaydd-an ʔɪˈða ʔabdullahi
 met-1SG.M Zaid-ACC and if Abdullah-GEN
 yaoribu-hu.
 hit-3SG.ACC
 ‘I met Zaid, and, suddenly, I saw Abdullah hitting him.’

4) fa-ʔalqa-ha fa-ʔɪˈða hayya hayya-tun tasʔa.
 PART-drop-3SG.F PART-if 3SG.F snake-NOM PROG.live
 ‘So he did, then—behold!—it became a serpent, slithering.’
 (The Nobel Quran, 2022, p. Surah 20, Verse 20)

5) navar-tuʔla ʔas-samaʔaʔ-i fa-ʔɪˈða ʔal-qamar-u mawʔi.
 look-1SG to DEF-sky-ACC PART-if DEF-moon-NOM light
 ‘I looked up to the sky, and suddenly I realized that the moon is lighting.’

1= First person, 2= Second person, 3= Third person, NOM = Nominative, ACC = Accusative, COMPL= Complementizer, DEF= Definite, DET = Determiner, DM=Discourse marker, F=Feminine, IND=Indicative, M=Masculine, PART=Particle, PL=Plural, SG = Singular, VOC =Vocative, GEN=genitive, INCL= inclusive.
From a semantic perspective, two syncretic forms emerge, and they have different interpretations. The former indicates that ʔḍa is used as an element for building complex structures. The latter indicates that ʔḍa is used as an element to reflect the attitude of the speaker toward the sudden realization of action. Therefore, the categorization of this particle is problematic.

The grammatical status of ʔḍa of ‘surprise’ is also given considerable attention by I-H [(Ibn Hisham)] because it was clearly an issue for the earlier grammarians. For al-Akhfash it was ḥarf ‘particle’, for al-Mubarrad, it was a zarf makan’ adverb of place’, and for al-Zajjai it was a zarf zaman’ adverb of time’ (Gully, 1995, p. 157).

For earlier grammarians, the categorization of ʔḍa is debatable. Earlier studies have focused on semantic interpretations of ʔḍa and examined its patterns. However, researchers have overlooked an essential piece in this puzzle, the speaker’s attitude. A close look at the distribution of this particle shows that it is syntactically restricted; that is, the particle has a distinct distribution, selection, and case. This study examines the syntactic conditions that license the use of conditional particles as markers of expressing speakers’ attitudes. This study is significant for clarifying the nature of this particle, and it is considered the first attempt to provide a comprehensive overview of how multifunctional particles operate in Classical Arabic from a syntactic-pragmatic perspective. By analyzing its syntax and underlying structure, the study contributes to our understanding of the language and how it functions. This type of linguistic analysis helps uncover patterns and structures in a language, which is crucial for language documentation, preservation, and further research. In addition, through syntactic diagnostics, the study identifies remarkable features of If of Surprise constructions. By highlighting these features, the study offers insights into the unique characteristics of this particular construction. This can be valuable for language learners, linguists, and researchers interested in Classical Arabic syntax.

The study is organized as follows. In section 2, we present a descriptive comparison between conditional and sudden particles and present evidence that sudden particles are syntactically restricted to certain clause types and functions. In section 3, we introduce the mechanism for data analysis. Section 4 analyzes sudden particles from a minimalist perspective. We show that sudden particles have expressive unvalued features that trigger agreement with speech act projections; that is, we show that sudden particles probe and agree with the speaker’s head in the speech act domain to value its unvalued expressive feature.

II. BACKGROUND

In this section, I provide a theoretical background to pave the way for the analysis of ʔḍa of ‘surprise’ from a generative perspective. The section presents the Minimalist Program (Chomsky, 1995) and its extension at the pragmatic-syntactic interface (Haegeman, 2014).

Chomsky (1995) Minimalist Program presents a cognitive model for analyzing language. The model views attempts to capture the common mechanism that creates complex constructions across languages. Chomsky (1995) refers to this mechanism as Universal Grammar (UG). While the model suggests that all languages meet some operations, principles, they differ in other parameters. From those two ideas, the Principle and Parameter theory of grammar emerges. Chomsky (1995) program focuses on how the Language Faculty creates infinite set of constructions by utilizing binary syntactic operations. Those operations and abide a set of universal principles, such as the Principle of Economy. This principle demands looking for optimal processes for creating syntactic constructions; that is, the Language Faculty utilizes the most economic cognitive steps for establishing an infinite set of structures (Luraghi & Parodi, 2008). In addition, the Language Faculty operates on a few operations. Merge is one of the operations that states that syntactic derivations emerge by merging parts of speech with each other in a bottom-up process. (Chomsky, 1995) claims that categories enter the syntax proper with two types of features. Those features are interpretable features (features that contribute to the semantic interpretation of categories such as Phi-features) and uninterpretable features (features that are essential for syntactic operations i.e., features that do not contribute to the semantic interpretation of categories such as the case feature with verbs). Features undergo a mechanism of feature-checking to eliminate uninterpretable features. For example, in categories such as verbs, case is a valued uninterpretable feature. That is, it is valued because it is a property of verbs to impact the case of nominals (e.g., verbs assign an accusative to direct objects). This feature, however, does not contribute to the semantic interpretation of verbs. Those features can be either valued or unvalued (Chomsky, 1995; Pesetsky & Torrejo, 2007).

According to Chomsky, “uninterpretable features (such as those for Case), if unchecked, will cause a derivation to crash” (Luraghi & Parodi, 2008, p. 32). AGREE is the operation that matches and deletes uninterpretable features. To check (establish agreement) features, AGREE deploys a downward probe-goal mechanism between unvalued and valued uninterpretable features. Unvalued uninterpretable features probe for valued uninterpretable features (goal). Once an unvalued feature finds a matching feature valued feature, it checks its feature and deletes. This process guarantees that structures are free of unvalued uninterpretable features.
III. DATA OF THE STUDY

In this study, the data was collected from multiple sources to ensure a comprehensive evaluation of the acceptability of grammatical constructions in Classical Arabic. The sources included books on Classical Arabic grammar as well as the researchers themselves, who are native speakers of Classical Arabic. This approach was adopted to obtain a diverse set of examples that cover various aspects of Classical Arabic grammar. Initially, the researchers gathered examples from books on Classical Arabic grammar. These books provided a wealth of information regarding different grammatical structures, verb conjugations, sentence formations, word order, and agreement patterns. This allowed for a broad representation of the grammatical constructions in the language. In addition to the examples obtained from books, the researchers, being native speakers of Classical Arabic, contributed their linguistic knowledge and expertise to generate additional examples. As native speakers, they possess an intuitive understanding of the language and its grammar, which is valuable in assessing the acceptability of various constructions. To test the acceptability of the grammatical constructions, the researchers made alterations to the examples. These modifications were carefully designed to explore the boundaries of acceptability and identify potential constraints within the language. By altering specific elements within the examples while preserving the overall structure, the researchers aimed to evaluate the flexibility and limits of Classical Arabic grammar.

To ensure a reliable evaluation of the examples, two additional native speakers of Classical Arabic were involved in the study as judges. These judges were selected based on their expertise in linguistics and their proficiency in Classical Arabic grammar. They had a strong command of the language and were knowledgeable about the different dialects and registers of Classical Arabic. The judges were presented with the modified examples and were asked to assess the acceptability of each example. They were provided with a Likert scale ranging from 1 to 5, where 1 represented complete unacceptability and 5 represented complete acceptability. The judges evaluated each example independently, without any prior knowledge of the alterations made by the researchers. This ensured unbiased judgments based solely on their linguistic intuition as native speakers of Classical Arabic. Clear instructions were provided to the judges on how to interpret and apply the acceptability criteria consistently. The guidelines encompassed both prescriptive and descriptive aspects of Classical Arabic grammar. Prescriptive guidelines focused on standard written Classical Arabic, while descriptive guidelines accounted for dialectal variations and colloquial usage.

Once the judges provided their ratings, the data was compiled and subjected to statistical analysis (cf., Abdelhady & Alkinj, 2023b). The average acceptability ratings for each example were calculated, allowing for the identification of patterns and trends in acceptability judgments. The results provided insights into which grammatical constructions were considered acceptable by native speakers of Classical Arabic. This study’s findings have implications for our understanding of Classical Arabic grammar, as they offer valuable insights into the acceptability judgments of native speakers. The data can contribute to Classical Arabic language teaching and curriculum development, assisting in the selection of grammatical constructions to be emphasized in language learning materials. Additionally, the study’s results can inform language processing research, aiding in the development of natural language processing algorithms and tools for Classical Arabic text analysis.

After obtaining the judgments of native speakers, the researchers analyzed the data qualitatively based on Chomsky (1995) Minimalist Program. We exposed the data to several syntactic tests for this part, including coordination, extraction, co-occurrence, and others. The data is tested against the following questions:

a) Why does the particle block extraction from its local domain?
b) Does the If of Surprise particle belong to adverbial phrases?
c) Can the Sudden particle phrase be fronted?
d) How can we depict speakers’ attitudes that pattern with this particle in terms of generative grammar?

We hypothesize that sudden phrases are small clauses. Those small clauses can appear in constructions with asymmetric coordination, and they can also appear in constructions that require full clauses. We argue because of being small clauses, such constructions do not allow extraction, and they do not interact with tense.

IV. SETTING THE SCENE

Wiltshchko (2014) claims that not only lexical categories but also functional categories can have multiple functions. Bliss and Wiltshchko (2018) support her claim by looking at the distribution and features of demonstratives in Blackfoot, an Algonquian language spoken in Canada. Against this claim, we argue that the particle ḏaḍa is a multifunctional unit of language; that is, ḏaḍa has various functions; the particle can serve as a discourse linking operator or a grounding operator. Before going into the technicalities that are related to these functions, we present the differences and similarities between sentence conditionals and utterance conditionals.

Conditional structures refer to sentences expressing factual implications or hypothetical situations in which the validity of what is shown in one clause depends on another (Goodwin, 1873; Haegeman & Wekker, 1984; Köpcke & Panther, 1989). See the following examples.

7) a. If it rains tomorrow, the match will be cancelled.
 b. If it rained tomorrow, the match would be cancelled.
 c. If it had rained yesterday, the match would have been cancelled.
8) Wenn du nach Barcelona gehst; dann besuch das Museo Picasso.

‘If you go to Barcelona, then visit the Museo Picasso.’

Like many languages (Abdelhady, 2019), in Classical Arabic and its varieties, conditionals consist of two clauses - a dependent and an independent clause. Several particles realize conditionals in Classical Arabic.

9) ʕanna sɪrta wajadatanii ɬaənb-ak

‘If you go anywhere, I will be with you.’

10) man yadrus bijd najaḥa bt-tafawuq.

‘Whoever studies hard will pass successfully.’

11) ʔayaana tazurn-ii ʔukrmu-ka.

‘If you visit me, I will host you graciously.’

In 12), the sentence shows a condition established by ʔɪða ‘if.’ The first piece of evidence for the conditional function comes from the observation that the clause headed by the particle cannot stand by itself; hence, the following corresponding structures are ungrammatical.

12) a. ʔɪða aš-šaʕb-u yawm-an ʔaraada al-ḥayaa

‘If people want to live respectfully in one day, life will respond to their prayers.’

b. * wa ʔɪða raʔaw tjaaratt-an ʔaw lahw-an ʔɪnfaʔd-ū

‘And if they have a trade or a game, they left to it.’

c. ʔɪða ʂaʔhabta ʔal-laʔii-a taʔʔayyata.

‘If you befriended a mean person, you would get hurt.’

In English, using the conditional particle ‘if’ is mostly associated with creating a condition; that is, there is a condition on syntactic positions that associate the particle ‘if’ with its conditional function. However, this is not always the case. Haegeman (1984) points toward instances in which the particle ‘if’ may serve a different role; the particle
creates a modification in utterances for pragmatic reasons. Such structures “are often ignored in linguistic analyses, but, they have been given due attention by logicians and in semantic studies” (1984, p. 487).

15) A: does anybody know who he is?
 B: yeah, I know him.
 A: how do you spell Mm?
 B: P-I-E-double L A: Thank you.
 B: I, ... if it’s the same man, I haven’t yet read his application

16) A: They thought there was something structurally wrong with U, the rear wall if you remember, B: Which had taken down? A: yeah (1984, p. 486)

Based on such data, Haegeman (1984, p. 501) concludes that conditional structures are related to ‘speech act conditionals’ or ‘pragmatic conditionals’ (e.g., see Abdel Hady, 2015; Abdel Hady, 2020; Abdelhady & Alkinj, 2023a for the impact of more information about Speech Acts). In spoken varieties of Classical Arabic, we observe similar instances.

17)
 a.
 \[saw.1SG.M \quad al-wald \quad \text{?\d\d}a \quad m\dd\quad axuuh \quad \text{?\dd}-ak.\]
 saw.1SG.M DEF-boy if not brother.3SG.M.POSS near-2.SG.M
 ‘I saw the boy if not his brother near you.’
 More peculiarities appear in the use of the particle \text{?\d\d}a ‘if’ in Classical Arabic. From a pragmatic perspective, \text{?\d\d}a ‘if’ departs from Haegeman’s (1984) description. The particle \text{?\d\d}a ‘if’ can appear to mark the attitudes of speakers toward the sudden realization of actions; that is, a speaker expresses his surprise that a certain event took place at the same time of his/her utterance.

b.
 \[\text{wa-}\text{?\d\d}a \quad \text{?\d\d}aq\d\quad an-naassa \quad rahmat-an\]
 \[\text{and-if} \quad \text{tasted.1PL.M.SUBJ} \text{DEF}-people \quad \text{mercy-NUN}\]
 \[\text{la-hum} \quad \text{maakruun} \quad \text{fii} \quad \text{3PL.M} \text{disbelief} \quad \text{in} \quad \text{?\d\d}a\text{aayaat} \text{-naa}\]
 \[\text{from} \quad \text{after} \quad \text{3PL.M} \quad \text{felt-if} \quad \text{if}\]
 ‘And if we made people have mercy after troubles, suddenly I will make disbelievers in my facts have troubles.’
 (The Nobel Quran, p. Sura 10, Verse 21)

c.
 \[d\d\d\quad ax-\text{?\d\d}a \quad a\f-t\dd\quad y-\dd\quad y-abkii.\]
 \[\text{entered-1SG.M-NOM} \quad \text{PART-if} \quad \text{DEF-child} \quad \text{PROG-cry.3SG.M}\]
 ‘I entered, and suddenly I realized that the child is crying.’

The examples in (18) depict two different uses of the particle \text{?\d\d}a ‘if’. The particle departs from its conditional function; that is, in the first example, there is no relation between removing the hand and how people feel. The second one shows this pattern more clearly. As we can notice, there are two particles of conditionals. The second particle appears in the subordinate clause. We conclude, then, that only one of those particles creates the conditional function while the other does not. The interpretation of the structure is in support of this claim. The speaker shows that there is a sudden turn in his perspective. First, he shows that he would make people get mercy after troubles because of their disobedience. Still, it is only then that he changes his perspective if it turns out that those people disbelieve again with whatever he told them. The speaker is changing his perspective, and the change takes place suddenly.

V. DATA DIAGNOSTICS

To figure out the syntactic status of the \text{?\d\d}a particle, we deploy several tests drawn from Haegeman (1984). Those tests include co-occurrence, word order, tense, negation, islands, coordination, and interaction with modal devices.

First, scrutinizing the \text{?\d\d}a particle shows clear syntactic constraints on its use and interpretation. As we observed earlier, the particle can co-occur with conditional particles.

19) \text{?\d\d}a \quad qaama \quad al-qard \quad br-harakaka \quad yar\d\i\d\a
 \text{if} \quad \text{did} \quad \text{DEF-monkey} \quad \text{in-movement} \quad \text{strange}
 \text{?\d\d}a \quad \text{\d\d}\text{-}al-Safaaal \quad \text{y-\dd\d\d\dd-k-\dd\dd\dd\dd}\text{-\dd\d\dd\dd\dd}.
"If the monkey made a wired move, the children start laughing (suddenly)."

20) * If the boy comes, if the children laugh.

Notice that the example in (19) shows two ʔɪða particles. Only the first particle leads to a conditional interpretation clause. The second particle, however, do not. The co-occurrence of the particles in one clause means that one of those particles has another function. If the two particles appear in English, this leads to ungrammatical construction (20).

Second, there is a restriction on word order. While it is acceptable to use conditional particles clause initially and clause medially, this is not allowed for If of Surprise ones.

21)

 PART-if DEF-child-NOM PROG-cry.3SG.M entered-1SG
 ‘I entered, and suddenly I realized that the child is crying.’

 if DEF-kids PROG-cry-3PL.M saw.3PL.ACC.1SG.NOM
 ‘The kids are crying and, suddenly, I saw them.’

In addition, the restriction on word order is observed in the selection of the particle for its clause type. The Classical Arabic language has both a VSO and a SVO word order pattern. However, the particle permits only SVO word order patterns. Notice that the selected clause after the If of Surprise particle permits only the SVO. This renders sentence (23) acceptable, but example (23) is not because of selecting a VSO word order.

22)

a. [at-ʔafl-u y-abkii] SVO

b. [y-abkii at-ʔafl-u] VSO

23)

a. daxalt-u fa-ʔɪða [at-ʔafl-u y-abkii].
 entered-1SG.M PART-if DEF-child PROG-cry
 ‘I entered, and suddenly I realized that the child is crying.’

b. * daxalt-u fa-ʔɪða [y-abkii at-ʔafl-u].
 entered-1SG.M PART-if PROG-cry DEF-child-NOM
 ‘I entered, and suddenly I realized that the child is crying.’

Third, the If of Surprise particle restricts the choice of tense/aspect. If of Surprise demands selecting a progressive form of a verb, while conditional particles do not; that is, a conditional particle requires a different aspect and tense.

24)

a. daxalt-u fa-ʔɪða at-ʔafl-lu y-abkii.
 entered-1SG PART-if DEF-child-NOM PROG-cry
 ‘I entered, and suddenly I realized that the child is crying.’

b. *daxalt-u fa-ʔɪða at-ʔafl-lu baka.
 entered-1SG PART-if DEF-child-NOM cried
 ‘I entered, and suddenly I realized that the child cried.’

 FUT-enter-1SG.SUBJ PART-if DEF-child-NOM FUT-cry
 ‘I will enter, and suddenly the child will cry.’

The examples above show that the If of Surprise particle allows the selection of present tense with a progressive aspect (24). Selecting the past tense leads to ungrammatical structures 24). In addition, the particle cannot occur with a phrase that expresses futurity 24).

Fourth, If of Surprise demands selecting affirmative structures; that is, using a negative sentence after an If of Surprise construction leads to ungrammatical constructions.

25) * daxaltu as-ʔafl-afar-ʔɪða laysa ʕal-ʕustaað hunaak.
 entered.1SG DEF-class-ACC PART-if not DEF-teacher there
 ‘I entered the class and suddenly I realized the teacher is not there.’
The interaction of If of Surprise with conjuncts is evident in the following examples (Compare (27) with (28)).

Fifth, If of Surprise constructions show syntactic islands. Boeckx (2012) defines syntactic islands as “a clause or structure from which a word cannot be moved.” This defining property is crucial for understanding how extraction operates within selected clauses. Notice that in conditional structures, islands do not exist; that is, movement is possible. Compare (27) with (28).

26) * _daxalt-_u _at-tafl-_u _fa-ʔða_ _y-akbi_.
 entered-1SG DEF-class-NOM PART-if PROG-cry
 ‘I entered, and suddenly I realized that the child is crying.’

b. * _man_ _daxalt-_u _uʃa-ʔða_ _y-akbi_.
 who entered-1SG PART-if PROG-cry
 ‘Who is crying when I suddenly entered?’

c. * _man_ _daxalt-_u _uʃa-ʔða_ _y-akbi_.
 who who entered-1SG PART-if PROG-cry
 ‘Who is crying when I suddenly entered?’

28) a. _ʔða_ _al-ʔustaað_ _šaraḥa_ _ad-dars_ , _fahmuḥu_ _at-tulaab_.
 if DEF-teacher explain DEF-lesson understand DEF-students
 ‘If the teacher explains the lesson, the students will understand it.’

b. _man_ _aḍa_ _šaraḥa_ _ad-dars_ , _fahmuḥu_ _at-tulaab_.
 who if explain DEF-lesson understand DEF-students
 ‘Who is the one, if he explains the lesson, the students will understand?’

c. _man_ _fahmu_ _ad-dars_ , _ʔða_ _šaraḥa-hu_ _al-ʔustaað_.
 who understand DEF-lesson if explain-it DEF-teacher
 ‘Who understood the lesson if the teacher explained it?’

The data shows three points of departure. First, the particle selects a noun and a progressive form of a verb. Second, the particle restricts extraction from local domains. That is, the particle phrase behaves like adjunct-islands (Boeckx, 2012; Christensen et al., 2013; López Sancio, 2015) in the sense that we cannot extract elements. Third, the phrase itself is not obligatory. Those three points lead us to conclude that the particle forms an adjunct that selects a nominal phrase.

Sixth, another test that highlights the distinct status of If of Surprise is coordination. Luraghi and Parodi (2008) define coordinated patterns as a “series of two or more items connected with some kind of conjunction”. Chomsky (1995) observes that coordination is exclusive to constituents that have the same type. He refers to this observation as the “Coordination Condition”. Based on this condition, researchers test if structures or constituents belong to the same type or not and how other coordinative patterns may emerge (Al Khalaf, 2015; Bruening & Al Khalaf, 2019; Reich, 2009). The interaction of If of Surprise with conjuncts is evident in the following examples (29) and (30).

29) a. _daxalt-_u _as-ʃafa_ _wa_ _fataḥ-_u _al-baab-a_.
 entered-1SG NOM DEF-class and opened-1SG DEF-door-ACC
 fa-ʔða _al-ʔustaað-_u _waqaf_.
 PART-if DEF-teacher-NOM stood.3SG.M
 ‘I opened the door and entered the class; suddenly I realized that the teacher is standing.’

b. _fataḥ-_u _al-baab-_u _fa-ʔða_ _al-ʔustaað-_u _wa_.
 opened-1SG DEF-door-ACC PART-if DEF-teacher-NOM and
 _at-taḥiḥ-_u _naaɪm-an_.
 DEF-student-NOM sleeping.3DU.M-NUN
 ‘I opened the door; suddenly I realized that the teacher and the student are sleeping.’
Weatherson, 2011). The examples below are illustrative.

denote a sudden realization of action with lexical items that indicate uncertainty is not acceptable (cf., Egan &

ʔɪ show that the particle cannot establish conditional constructions because it can co-occur with conditional particles. In

permissible. However, the examples in (30) do not. In a29), two noun phrases that are part of the ʔɪ phrase are coordinated. Those two patterns are permissible. However, the examples in (30) are ungrammatical. In (30)a), it is not acceptable to coordinate two (or more) ʔɪ phrases using and. In addition, (30)b) shows that using a disjunct coordinator does not save the structure. Furthermore, while it is acceptable to use ellipses ʔɪ phrases, coordinating elliptic and entire phrases is not allowed (30)c). The examples confirm that, under coordination, ʔɪ phrases impose restrictions on constituents and their types.

Seventh, an If of Suprise construction does not occur with epistemic models. That is, the use of ʔɪ phrases that denote a sudden realization of action with lexical items that indicate uncertainty is not acceptable (cf., Egan & Weatherston, 2011). The examples below are illustrative.

30)

a. * fatahuttu al-baab-a fa-ʔɪ al-ʔustaad mawjuud
opened.1SG DEF-door-ACC PART-if DEF-teacher present

wa fa-ʔɪ at-taalib-u y-abkii.

‘I opened the door; suddenly I realized that the teacher is present and suddenly I realized that the student is crying.’

b. * fatahuttu al-baab-a fa-ʔɪ al-ʔustaad mawjuud
opened.1SG DEF-door-ACC PART-if DEF-teacher present

or PART-if DEF-student-NOM PROG-crying.3SG.M

‘I opened the door; suddenly I realized that the teacher is present or suddenly I realized that the student is crying.’

c. * fatahuttu al-baab-a fa-ʔɪ al-ʔustaðwa at-talibu
opened.1SG DEF-door-ACC PART-IF DEF-teacher and DEF-student

PROG-crying.3SG.M

‘I opened the door; suddenly I realized that the teacher (is present) and the student is crying.’

We can see this in the examples in 29) while those in 30) do not. In a29), two verb phrases are coordinated above the ʔɪ phrase. In b29), two noun phrases that are part of the ʔɪ phrase are coordinated. Those two patterns are permissible. However, the examples in (30) are ungrammatical. In (30)a), it is not acceptable to coordinate two (or more) ʔɪ phrases using and. In addition, (30)b) shows that using a disjunct coordinator does not save the structure. Furthermore, while it is acceptable to use ellipses ʔɪ phrases, coordinating elliptic and entire phrases is not allowed (30)c). The examples confirm that, under coordination, ʔɪ phrases impose restrictions on constituents and their types.

Seventh, an If of Suprise construction does not occur with epistemic models. That is, the use of ʔɪ phrases that denote a sudden realization of action with lexical items that indicate uncertainty is not acceptable (cf., Egan & Weatherston, 2011). The examples below are illustrative.

31)

a. * fatahuttu al-baab-a fa-ʔɪ al-ʔustaad rubbamaa
opened.1SG DEF-door-ACC PART-IF DEF-teacher maybe

naaʔiy, sleeping.3SG.M

‘I opened the door and suddenly I realized that the teacher might be sleeping.’

opened.1SG DEF-window PART-if DEF-bird might fly.3SG

‘I opened the window; suddenly I realized that the bird might fly away.’

*rubbamaa fatahuttu an-naasfda fa-ʔɪ al-ʔustaad
maybe opened.1SG DEF-window PART-IF DEF-teacher

naaʔiy, sleeping

‘Maybe, I opened the window, and suddenly I realized that the teacher is sleeping.’

In (31), the examples show patterns of interaction between the If of Suprise constructions and epistemic models. All the examples point out that using epistemic models with this particle is not acceptable. Pragmatically speaking, the particle requires a context that shows that the speaker is surprised about an event he suddenly realized. This context is not denoted by epistemic models showing that the speaker is unsure of his stance. Furthermore, syntactically speaking, because the particle c-commands its complement, it selects a phrase that fulfills the requirement of its selection criteria.

To sum up, the syntactic diagnostics show that the ʔɪ particle has a unique interaction with structures. The tests show that the particle cannot establish conditional constructions because it can co-occur with conditional particles. In addition, the tests prove that the particle restricts word order patterns, indicating a binding relationship that results in such a restriction. Moreover, the particle does not freely interact with tense, aspect, and negation. Furthermore, the particle creates a syntactic island and restricts extraction. Additionally, the test shows that coordinative patterns are restricted; it is not permissible to coordinate two (or more) ʔɪ phrases using and, and using disjunctive coordinators is equally problematic. Finally, the syntactic test on modality points out that there is an impact of context (i.e., speaker) on the structure of this particle.

VI. ANALYSIS AND DISCUSSION

Based on the diagnostics, we argue that the ʔɪ particle is a small clause (Al-Seghayer, 1988; Balazs, 2012; Basilico, 2003; Cardinaletti, 2020; Contreras, 1987). Luraghi and Parodi (2008, p. 173) define a small clause as “a construction
that lacks a verb. It consists of a subject NP/DP and a predicate adjective phrase, noun phrase, or a prepositional phrase.” This is illustrated in the example below.

32) I consider Eric smart.

In order to advance on this proposal, we briefly present features of small clauses, and we show the similarity between small clauses and the ḥāda construction (33).

33) daxalt-u fa-ḥāda at-tṭfl-u y-abbīi.
 entered-1SG PART-if DEF-child-NOM PROG-cry.3SG
 ‘I entered, and suddenly I realized that the child is crying.’ (repeated)

Let us assume that yabkii’ ‘crying’ is part of a phrase that has a specifier. The noun phrase attaflu ‘the boy’ occupies the specifier position of this phrase. Then, the ḥāda particle merges with this phrase. For simplicity, at this stage, we present a primitive analysis. We represent the functional head as X. Consider the following tree in (34).

34)

```
    XP
   /
  DP     X'
 /   \      \     
at-ṭtafl-u X     XP
      \  
         yabkii
```

We argue that yabkii’ ‘crying’ is the complement of a functional head for predication, Predicate (PRED) (Baker, 2003). There are reasons to that support this proposal. First, unlike verbs, the complement does not inflect for tense. According to Baker (2003, p. 46), “the most obvious difference between verbs and other lexical categories is that in many languages only verbs can be inflected for tense and related notions, such as aspect and mood.” yabkii’ ‘crying’ can inflect for tense only and only if it is not part of the the ḥāda phrase. However, our data show that in this phrase, yabkii’ ‘crying’ cannot inflect for past baka ‘cried’ or future sayabki ‘will cry.’ Based on this, we conclude that the complement functions as an adjective. This conclusion is supported by substitution. That is, adjectives can substitute yabkii’ ‘crying.’ Consider the following example.

35) navar-taḥāda ḥa-samṭ fa-ḥāda ḥal-qamar-u muṣīn
 look-1SG to DEF-sky PART-if DEF-moon-NOM bright
 ‘I looked up to the sky, and suddenly I realized that the moon is bright.’ (repeated)

Scrutinizing the example in (35), we notice that muṣīn ‘bright’ is an adjective modifying the determiner phrase (DP) ḥalqamaru ‘the moon.’ This case is supported in Classical Arabic and in other languages. Compare 35) with the following examples in 36).

36) a. Omaṁ mṛid/muṣīn ṣ+līlim.
 Omar sick/ teacher
 ‘Omar is sick/a teacher.’
 (Benmamoun, 2000, p. 8)

b. Juan-ka mayistr-cu-mi
 Juan-TOP teacher-VALID
 ‘Juan is a teacher.’
 (Imbabura Quechua)
 (Baker, 2003, p. 47)

According to Baker (2003), predicate phrases can have a determiner phrase (DP) or adjectival phrase (AP) as their complements. In (36 a), in Classical Arabic, a PRED selects mṛid (AP) or muṣīn ṣ+līlim (DP) as its complement. We notice the same case in Quechua, a language spoken in Peru, Colombia and Ecuador, where PRED selects the DP mayistr-cu-mi ‘teacher-VALID’ as its complement. In (35), PRED selects the AP muṣīn as its complement and merges with ḥalqamaru ‘the moon’ as its specifier.

Furthermore, our data shows that the ḥāda is not optional in such constructions. That is, it is ungrammatical to generate the intended constructions without the ḥāda particle. This leads use to conclude that the ḥāda particle selects a small clause as its complement. Consider the following instances.
Both examples in 37) are unacceptable. In 37)a, ʔal-qamar-u muuᵲ ‘the moon is bright’ is not selected and cannot adjoin with navar-tu ʔla ʔs-samaa ‘I looked at the sky.’ The same case applies to b37). Based on our data, we propose the hierarchy in (38) to depict the internal structure of (35).

38) [SC Partʔiða [PredP DPʔal-qamaru [Predᵲ [AP muuᵲ]]]]

This structure shows that the Predᵲ selects the AP as its complement and projects into PreP’. The DP merges as a specifier which leads to the maximal projection of the PredP. The particle ʔiða selects the PredP and projects into a SC.

Furthermore, we argue that the SC of ʔiða functions as an asymmetrically coordinated small clause, distinguishing it from circumstantial adjuncts (Citko, 2000; Haddad, 2020). The adjunct argument (39) falls apart because circumstantial adjuncts can merge on both the left and the right periphery.

39) a. Yesterday, she was here.
 b. She was here yesterday.

However, based on our data, If of Suprise occurs only on the right periphery. It cannot move to the left periphery. In addition, we observe the use of a coordinator before the ʔiða phrase. Adjuncts do not require a coordinator.

Adopting the SC proposal, we can account for the presence of the coordinator before If of Suprise and the use of If of Suprise in subordinated constructions. Our proposal accounts for why the coordinator is not used in (40a). It shows that a coordinator should not appear when If of Suprise is used in subordinate constructions, like the example in (40b).

40) a. ʔiða qaam al-qirdu bi-harka yariibu
 if did DEF-monkey in-movement strange
 ʔiða ʔal-ʔafal y-adlak-uun.
 if DEF-kidsPROG-laughing-APL
 ‘If the monkey does a weird move, the children start laughing (suddenly)’.
 b. * If the monkey makes a weird move, and the children start laughing.

This pattern supports our argument that If of Suprise cannot function as a modifier. First, modifiers cannot build subordinate constructions. That is, we cannot use an adverbial clause as an answer to conditional subordinated clauses (41). The tree diagram in (42) represents an example like ‘If the water boils, turn of the stove.’ Therefore, If of Suprise cannot function as a modifier for CPs because the CP itself should modify the If of Suprise part, the SC (43). If that is not the case, we will end up with structures, like (41), which are ungrammatical.

41) a. * If the teacher comes, if you sleep.
 b. * If the boys sleep, when you go.
 c. * If the water boils, while you turn of the oven.
43) For the second pattern, we argue that the SC forms an asymmetrical conjunct (40). This explains why the SC occupies the right periphery only. In addition, we can account for why a coordinator appears in such a construction.

44) Based on our analysis, there is a coordination between a CP and SC. This coordination pattern is asymmetrical. The conjunction selects the SC forming a Conj’. The CP merges as a specifier of this conj’. The SC argument is further supported by the use of If of Surprise in subordinated constructions.

Our proposal predicts that those SCs merge with Speech Act Phrases (SAPs). This prediction explains why it is possible to coordinate SC constructions and to use them in subordinate structures. Furthermore, it explains the sudden effect of if at the syntactic-pragmatic interface, representing the syntactic-pragmatic representation of the speaker in the utterance. That is, the syntax represents how the speaker suddenly realizes a situation.

45) Note that to represent this syntactically, we argue that a Speech Act Phrase (Akkus & Hill, 2018; Haegeman, 2014; Hill, 2013) is maximally projected through merging the functional head Speaker, SA, with the SC. Following Abdelhady (2020), we can explain the patterns above as cases of coordination and subordination at the level of SAPs. We propose that SA has an unvalued interpretable feature [SUDDEN]. The specifier has a valued interpretable feature [SUDDEN]. SA moves and internally merges with SAP (SAP shell hypothesis) to value its unvalued feature. It probes for a goal. SA values its unvalued feature once it locates the valued feature [SUDDEN] of the specifier. This leads to the sudden interpretation of SC.

2 See Abdelhady (2020) for further details on coordinating SAPs.
VII. Conclusion

In the examination of the syntactic nature of the If of Surprise construction in Classical Arabic, it becomes apparent that this particular type of construction differs significantly from both conditional clauses and adverbials. The exceptional status of the If of Surprise construction can be attributed to its distinctive syntactic features and configurations. By employing syntactic diagnostics and analyzing its configurations, we gain further insight into the unique characteristics of this construction.

The syntactic diagnostics employed shed light on the fact that If of Surprise constructions can coexist alongside conditional clauses. In various languages, conditional constructions often utilize a particle to establish their conditional function, but typically only one such particle is employed. For instance, in English, the particle “if” is utilized exclusively in subordinate clauses to denote a condition. However, if we observe the co-occurrence of If of Surprise with the conditional particle “if,” it becomes evident that the function of If of Surprise is distinct. This differentiation is further supported by additional tests examining the interaction between the particle and aspects such as tense, negation, and aspect.

Based on the outcomes of our diagnostic analyses, we arrive at the conclusion that If of Surprise is classified as an adjunct clause. Specifically, it can be categorized as a small clause due to its fulfillment of the necessary conditions associated with small clauses. Although this clause shares similarities with conditional structures in terms of its phonetic form, it diverges from them in its syntactic function. Moreover, we propose a connection between the If of Surprise construction and Speech Act Projection. However, in order to establish the universality of such projections, further investigations are required to investigate how small clauses can project into Speech Act Projections (SAPs) (cf., Abdelhady, 2021, 2023). These inquiries would contribute to a more comprehensive understanding of the If of Surprise construction and its relation to the broader realm of linguistic phenomena.

References

Saleem Abdelhady is an assistant professor of English Language and Communication at the American University of the Middle East, Kuwait. Dr. Abdelhady obtained his Ph.D. from Memorial University of Newfoundland, St. John’s Canada. He has published several articles in sociolinguistics, syntax, and pragmatics.