Cognate Object Constructions in Najdi Arabic: An HPSG Approach

Seham A Alawadh
Department of English Language and Translation, College of Arabic and Social Studies, Qassim University, Saudi Arabia

Abdulrahman A. Althawab*
Department of English Language and Translation, College of Arabic and Social Studies, Qassim University, Saudi Arabia

Abstract—Cognate object constructions (COCs) are known for their idiosyncratic properties in that they consist of an intransitive verb that takes an NP whose head is a verbal noun that is semantically and morphologically cognate to the verb. In Arabic literature, this topic is considered one of the understudied linguistic phenomena. Therefore, this paper attempts to contribute to the ongoing linguistic research by exploring COCs in one of the Arabic varieties, namely Najdi Arabic (NA). This paper illustrates the main properties that are shared by all COCs in NA. It also provides a theory-neutral description of the syntactico-semantic properties of one of the COC types, namely the particular event COC. In addition, it offers an analysis of the common core properties of all COCs and the syntactico-semantic properties of particular event COCs using the approach of Head-driven Phrase Structure Grammar (HPSG).

Index Terms—cognate object constructions, particular event COC, Najdi Arabic, non-transformational, HPSG

I. INTRODUCTION

Cognate object constructions (COCs) have received considerable attention among various linguists (e.g., Alqurashi, 2020; Al-Sammak, 2012; Farkas, 2020; Madkhali, 2017; Melloni & Maisini, 2017; Pereltsvaig, 1999; Pereltsvaig, 2002; Willson, 2019).

Generally, COCs can be described as constructions in which a verb and a postverbal noun have the property of being semantically and morphologically cognate (Macferland, 1995; Madkhali, 2017), as in (1) from Najdi Arabic (NA). In this example, it can be noticed that the cognate object (CO) ʔeħk ‘laugh’ is morphologically and semantically related to the verb ʔħakan ‘laughed’.

1. ḷ-banaːt ʔeħk ʕaːli b-ʔaː-saːg
 DEF-girls laugh loud in-DEF-class

 ‘The girls laughed a loud laugh in the class.’

To the best of researchers’ knowledge, little attention has been paid to this construction in Arabic, more specifically, to the local varieties of Arabic. Consequently, it remains rather unclear what the nature of COCs is in such varieties. This paper attempts to fill this gap and contributes to current linguistic research by describing and providing a syntactic analysis of COCs in NA using the framework of Head-driven Phrase Structure Grammar (HPSG).

However, it should be kept in mind that this study focuses on the syntactico-semantic properties of all COCs in general and the COCs that have particular event readings in particular. Therefore, a full discussion of the other types of COCs lies beyond the scope of this paper.

The remaining part of the paper proceeds as follows: section [II] presents an overview of the theoretical framework, section [III] and its subsections describe COCs in NA, section [IV] provides an analysis of COCs in NA, and section [V] concludes this paper.

II. THEORETICAL FRAMEWORK

HPSG is a theory of non-transformational generative grammar developed by Sag and Pollard in 1987. It aims to provide a precise analysis of grammatical phenomena (Abeillé & Brosley, 2021; Müller, 2015). Grammar in HPSG is seen as a system that contains linguistic types, constraints that set restrictions on these types, and features that identify the basic properties of the types (Müller, 2020).

Linguistic objects and constraints in HPSG are described by feature descriptions, which are known as Attribute-Value-Matrices (AVMs) (Müller, 2015). For a better understanding of how HPSG describes linguistic objects by using AVM, a partial lexical entry of the verb ʔabal ‘met’ from NA has been provided.

* Corresponding author.
2. *gabal (met.3ms) lexical entry:

```
PHONE {gabal}
CAT HEAD {verb}

VAL SUBJ {e}

CONT INDEX {meet}
MAIN {e}

ARG-ST {[1], [2]}
```

In HPSG, the lexical entry in (2) provides the following information. The value of the feature PHON (OLOGY) provides a list of the sign's (i.e., linguistic object) phonemes. The syntactic and semantic properties of the sign are encoded in the feature SYNSEM, which has two sub-features: CAT (EGORY), which illustrates the syntactic properties of the sign, and CONT (ENT), which demonstrates the sign's semantic properties. The ARG (UMENT)-ST (UTURE) feature shows the basic combinatorial information, which is usually the concatenation of the SUBJ (ECT) and COMP (LEMENT) values. Tags in the lexical entry show a fundamental property in HPSG called structure-sharing, which refers to token-identity. For example, the subject's value <[1]NP> and the first element in the ARG-ST <[1]> are identical (Abeillé & Brosley, 2021; Ginzburg & Sag, 2000).

Concerning the analysis of the semantic properties of the sign, the framework of Lexical Resource Semantics (LRS) (Richter & Sailer, 2003) has been one of the competent and informative semantic frameworks used in HPSG. In LRS, the feature CONT has two sub-features: INDEX, which corresponds to the semantic variable of the sign, and MAIN, which indicates the main semantic contribution of the sign. To illustrate this more, (2) shows that the INDEX value of the verb *gabal ‘met’ is the event variable e, and the main lexical meaning is the constant meet’. The reason for choosing this framework is that LRS provides features that can be used to capture the cognateness between the verb and the CO (Sailer, 2010; Richter & Sailer, 2003).

Having introduced the frameworks that are used in this paper, the next section describes the main syntactico-semantic properties of COCs in NA.

III. COGNATE OBJECT CONSTRUCTIONS IN NA: DESCRIPTION

This section describes the main properties of COCs in NA. The following subsection [A] delimits the concept of COCs in NA and illustrates the main properties shared by all COCs in NA. Then, the subsection [B] demonstrates the types of COCs in NA. After that, the subsection [C] provides a description of the main syntactico-semantic properties of particular event COCs in NA.

A. Delimitation of the Concept of COCs in NA

It has been widely argued in the literature that a COC is characterized by comprising an unergative verb followed, canonically, by a postverbal noun that is semantically and morphologically cognate to the verb. Sentences (3) and (4) are examples of typical COCs.

3. *dhahak-t dhakkah zaljah
 laughed.1s laugh loud
 ‘I laughed a loud laugh.’

4. *nama-t nmai nomah yafisah
 sleep.3fs mother-POSS.1s sleep light
 Literally: ‘My mother slept a light sleep.’

It is worth noting that each COC that has the aforementioned characteristics does not select a non-cognate noun as its object. This is shown by the ill-formedness of (5) and (6) in which the verbs *nam ‘sleep’ and *ebtasm ‘smile’ are followed by the non-cognate nouns yafuah ‘nap’ and dhakkah ‘laugh’, respectively.

5. *nam l-walad yafuah yafisah
 slept-3ms DEF-boy nap little
 Literally: ‘*The boy slept a little nap.’

6. *ebtasm-at l-bent dhakkah helwah
 smiled.3fs DEF-girl laugh beautiful
 Literally: ‘*The girl smiled a beautiful laugh.’

The question raised here is whether or not cognate nouns (CNs) occurring with optionally transitive verbs, as in (7), with monotransitive verbs, as in (8), and with unaccusative verbs, as in (9), should be considered COCs.

7. yana-u gawami gademah
 sung.3pm songs old
 ‘They sung old songs.’
Concerning sentences (7) and (8), Massam (1990) argued that these sentences should be distinguished from COCs because verbs, such as *yana* ‘sing’ and *gal* ‘say’, can take non-cognate nouns as their objects, as in (10) and (11). On the other hand, unaccusative verbs, as in (9), do not select non-cognate nouns as their objects. This can be seen by the ungrammaticality of (12) in which the verb *tˁah* ‘fell’ is followed by the non-cognate noun *bazχah* ‘fall’.

Given this, the essential properties that all COCs in NA must share can be summarized as follows:
- The verb in the COC is an intransitive verb.
- The verb and the CO must be semantically cognate.
- The verb and the CO must be morphologically cognate.
- The verb in the COC does not select non-cognate NPs.

This section has demonstrated the properties that are shared by all COCs in NA. The subsequent section concerns how COCs in NA can be classified into different types based on their semantic readings.

B. COCs Types in NA

Based on the semantic readings of COCs in NA and following Sailer's (2010) classification, COCs in NA have been classified into four types: particular event COCs, concrete resultant COCs, generic event COCs, and abstract resultant COCs. The motivation for adapting this classification is that each semantic reading of the COCs seems to correlate with specific syntactic properties in NA. The following are examples of each type of COC.

13. *nama-t humi nomah zainah* (particular event COC)
sleep.3fs mother-POSS.1s sleep good

14. *l-bent sˁarχa-t sˁarχah Saljah* (concrete resultant COC)
DEF-girl screamed-3fs scream loud

15. *namma nomat ḥahl l-kahf b-l-ʕed* (generic event COC)
slept-1p sleep companions DEF-cave in-DEF-Eid

16. *sˁah-at l-bent sˁah gahar* (abstract resultant COC)
cried.3fs DEF-girl cry oppression

This paper focuses on the first type of COC, namely particular event COC. Thus, the subsequent section describes the syntactico-semantic properties of particular event COCs.

C. Particular Event COC in NA

For the particular event COC, the CO refers to the same action denoted by the verb. For instance, the CO *rakðˀ* ‘running’ in (17) refers to the same action denoted by the verb *rkðˀa-t* ‘ran.3fs’. According to Mittwoch (1998) and Sailer (2010), the semantic representation of sentence (17) is shown in (18).

17. *rkðˀa-t l-bent rakðˀ sereʃ* run.3fs DEF-girl running fast

Literally: ‘The girl ran a fast running.’
18. \(\exists e (\text{run}(e) \text{Arg1}(e, l\text{-bent} \text{‘the girl’}) \land \text{serf} \text{‘fast’}(e)) \)

In (18), the event reading of COCs in NA has been modeled using the event variable \(e \) (Parsons, 1990). The semantic representation in (18) states that there is an event \(e \) that is a \(\text{rakd} \text{‘running’} \) event in which \(l\text{-bent} \text{‘the girl’} \) is the participant, and this event has the property of being \(\text{serf} \text{‘fast’} \).

According to Sailer (2010), one of the empirical tests for this reading is the possibility of a manner paraphrase. It can be observed that (17) is semantically equivalent to (19), which has an intransitive verb followed by an adverbial. Hence, sentence (19) has the semantic representation shown in (18).

19. \(\text{rakd} \text{-t} \quad \text{l-bent} \quad \text{b-serf} \text{tah} \)
\(\quad \text{ran.3fs} \quad \text{DEF-girl} \quad \text{in-fast} \)

Literally: ‘The girl ran in a fast way.’

A COC that has an event reading follows the description of COCs presented in Mittwoch (1988) in which it is neither an argument nor an adjunct but a realization of the Davidsonian event argument of the verb (i.e., it represents the event itself).

One of the noticeable syntactic properties of particular event COCs in NA is that they are, in most cases, modified by an adjective. This property is one of the fundamental properties that distinguish COCs from other similar cognate constructions, namely cognate infinitive constructions (CICs). Particular event CO and cognate infinitive (CI) are both syntactically odd (with the assumption that the CO here has no implied meaning). Taken together, the typical structural pattern for particular event COCs in NA is \(V + A D J + C O \).

Another point regarding the modification of particular event COs is that, without being modified, particular event COs would be considered semantically tautological and would not serve any apparent purpose (Kuno & Takami, 2006). To illustrate more, sentence (21), which does not have a CO, has the semantic representation shown in (22). When a CO has been added with no modification, as in (23), it will have the same semantic representation as in (22).

20. \(\text{reka} \text{d} \text{-t} \quad \text{Khalid} \quad \text{rakd} \text{ah} \)
\(\quad \text{run.3ms} \quad \text{Khalid} \quad \text{running} \)

‘Khalid ran.’ (Alawadh, 2023, p. 70)

Sometimes particular event COs may be used without being modified in cases where the sentence has an implied meaning. This is illustrated by (24) in which the sentence here has the implied meaning that the running event was fast.

21. \(\text{nam} \quad \text{l-walad} \)
\(\quad \text{slept-3ms} \quad \text{DEF-boy} \)

‘The boy slept.’

22. \(\exists \text{nam} \text{‘sleep’}(e) \text{Arg1}(e, l\text{-walad} \text{‘the boy’}) \)

23. \(?? \text{nam} \quad \text{l-walad} \quad \text{nomah} \)
\(\quad \text{slept-3ms} \quad \text{DEF-boy} \quad \text{sleep} \)

‘??The boy slept a sleep.’

Literally: ‘I swear to Allah he ran a running’.

The implied meaning: ‘I swear to Allah he ran a fast running’.

It is plausible to argue that a particular event COC cannot occur without specifying how the action took place, either explicitly or implicitly. Consequently, particular event COCs, as in (23), are likely to be ungrammatical or at least syntactically odd (with the assumption that the CO here has no implied meaning). Taken together, the typical structural pattern for particular event COCs in NA is \(V + ADJ + CO \).

Particular event COs in NA also seem to be similar to the eventive COs in English, where they tend to be indefinite (Kim & Lim, 2012; Sailer, 2010). This explains why sentence (25) is ungrammatical.

24. \(\text{Wa} \quad \text{Allah} \quad \text{yah} \quad \text{reka} \text{d} \text{-t} \quad \text{rakd} \text{ah} \)
\(\quad \text{and} \quad \text{Allah} \quad \text{he} \quad \text{run.3ms} \quad \text{running} \)

Literally: ‘I swear to Allah he ran a running’.

The implied meaning: ‘I swear to Allah he ran a fast running’.

25. \(*\text{nama-t} \quad \text{yum-i} \quad n-nomah \quad z-zainah \)
\(\quad \text{sleep-3fs} \quad \text{mother-POSS.1s} \quad \text{DEF-sleep} \quad \text{DEF-good} \)

‘My mother slept the good sleep.’

Regarding pronominalization, it seems that this type of CO is non-referential. Therefore, it cannot be pronominalized, as illustrated by (26). In this example, the CO is underlined, and the clitic pronoun is marked in bold.

26. \(*\text{nama-t} \quad \text{yum-i} \quad nometin \quad zainah \quad wa \quad sughab \quad b-saith \quad namet-ah \quad agt-i \)
\(\quad \text{sleep-3fs} \quad \text{mother-POSS.1s} \quad \text{sleep} \quad \text{good} \quad \text{and} \quad \text{in-hour} \quad \text{sleep-it} \quad \text{sister-POSS.1s} \)

‘My mother slept a good sleep then after an hour my sister slept it.’

However, pronominalization is possible in cases where the pronouns refer to the whole event (Real-Puigdollers, 2008). This is demonstrated in (27) where the clitic pronoun in the word \(mn-ah \text{‘from it’} \) refers to the entire sleeping event rather than the CO \(n-nomah \text{‘zainah’} \text{‘good sleeping’} \) alone.

27. \(*\text{nama-t} \quad \text{yum-i} \quad nomah \quad zainah \quad wa \quad ma \quad gama-t \quad mn-ah \quad ella \quad l-sas'ar \)
\(\quad \text{sleep-3fs} \quad \text{mother-POSS.1s} \quad \text{sleep} \quad \text{good} \quad \text{and} \quad \text{NEG} \quad \text{awake.3fs} \quad \text{from-it} \quad \text{except} \quad \text{DEF-evening} \)

‘My mother slept a deep sleep and did not awake from it until the evening.’
However, finding some counterexamples for the properties mentioned above is possible since there is a chance to make these COs referential (Massam, 1990; Real-Puigdollers, 2008). However, they will denote a resultant object rather than an event in this case. This is shown in (28) in which the CO *nomah* ‘sleep’ refers to a specific sleeping that exists as a result of the action denoted by the verb rather than to the event itself. In addition, the manner paraphrase, which is considered an empirical test for particular event COCs, is not available because the CO does not modify the event adverbially. This explains why the CO in (28) is referential and definite. It is also not modified by an adjective.

28. *ʔaχeran nemt n-nomah alii kent ʔatemana-h*

Finally, slept.1s DEF-sleep that was.1s hope.1s-it

Literally: ‘Finally, I slept the sleep that I was hoping for’

To sum up, the syntactic properties of the particular event COCs that have been discussed so far seem to go in line with the properties of COCs mentioned in Jones (1988), Mittwoch (1998), and Real-Puigdollers (2008). Typically, they are indefinite NPs that must be modified by an adjective. In addition, they can be paraphrased into adverbials but cannot be pronominalized.

IV. COGNATE OBJECT CONSTRUCTION IN NA: ANALYSIS

This section attempts to provide a suitable analysis of COC in NA using the framework of HPSG. Subsection [A] offers an analysis of the common core properties that all COCs must have. Then, subsection [B] provides an analysis of the syntactico-semantic properties of particular event COCs in NA.

A. The Overall Analysis of COC in NA

This section seeks to provide a general constraint that contains the essential properties that all COCs in NA must have. A proper analysis should account for the following properties:
- The verb in COCs must be intransitive.
- The verb cannot select non-cognate NPs.
- The verb and the CO must be morphologically cognate.
- The verb and the CO must be semantically cognate.

Concerning the status of COs in NA, some linguists treat COs as typical arguments (e.g., Macfarland, 1995), and some as adjuncts (e.g., Jones, 1988). Another possibility is that COs can be treated as a special kind of complement. In this section, we attempt to figure out which analysis is suitable for COs in NA.

Sailer (2010) proposes an HPSG analysis for COC in English. He analyzes COCs using lexical rules because valence alternations are best to be analyzed using them (Abeille & Brosley, 2021; Müller, 2006). To explain more, in COCs, the valence of intransitive verbs changes to require two arguments instead of one. Hence, lexical rules are used to generate COCs, which require two arguments, from intransitive verb constructions.

(29) presents the lexical rule formulated by Sailer for COC in English. The input in this lexical rule is an intransitive verb that has one argument. The output is a verb with two arguments in which the second argument is semantically cognate to the verb, as indicated by the identical values of the MAIN features of the verb in the input and the CO in the output.

29. `cognate-object-construction-lexical-rule (coc-lr)` (Sailer, 2010, p. 204)

The account proposed by Sailer seems convincing and reasonable. However, morphological cognateness should be included in the analysis because, as discussed above, it is a fundamental criterion for considering a specific construction a COC. Thus, although this paper focuses on the syntactico-semantic properties of COCs, the morphological cognateness should be accounted for in the proposed lexical rule.

To catch the morphological cognateness, the feature CHARS, introduced in Bhuyan (2008), is used. The CHARS feature, which is a sub-feature of MORPH(LOGY), displays the letters of the sign’s root (i.e., the letters of the root of the word). In a NA COC, the value of the CHARS feature of the CO and the value of the CHARS feature of the verb must be identical. Given this, the updated lexical rule that covers the morphological cognateness is presented in (30).

30. `cognate-object-construction-lexical-rule (coc-lr)` in NA

(30) now includes all the essential properties of COCs in NA. The verb in the construction is intransitive because the input requires only one argument (i.e., the subject). By means of lexical rules, intransitive verbs are used to generate a class of verbs that have two arguments in which the second argument is always a CO. This condition is guaranteed by
the constraint that the verb and the CO have identical values of CHARS features and identical values of MAIN features (i.e., they are semantically and morphologically cognate). (30) also successfully excludes CNs occurring with transitive and optionally transitive verbs from being COs.

Concerning the status of COs, we argue that a CO in NA is not the typical argument (i.e., direct object) of the verb but rather a special kind of complement. To differentiate it from the direct object, CO in NA is better analyzed as a non-canonical argument of the verb that is analyzed in HPSG as a member of the ARG-ST of the verb but not as a member of the COMP list. This analysis was initially proposed by Miller and Sag (1997) to account for Romance pronominal affixes. Borsley (2010) also uses the same account for the structure of clitics in Arabic.

The analysis discussed so far covers the similarities or the properties shared by the different types of COCs in NA. As for the differences among the types of COCs, Sailer (2010) proposes a hierarchical classification of COCs in English, as shown in (31), which can be used as a means of distinguishing between the types of COCs.

31. Type hierarchy of COCs (Sailer, 2010, p. 204)

In brief, the supertype of the hierarchy in (31) is the type coc-lr (cognate-object-construction-lexical-rule), which has the constraint given earlier in (30). The hierarchy also shows that COCs can be classified into two broad types. The first is the type of particular event COCs, while the second includes the other types of COCs. As discussed earlier, the paper here concentrates on the first type of COCs, whose analysis will be the concern of the subsequent section.

B. The Analysis of Particular Event COCs

For particular event COCs, a proper analysis should account for the properties that can be summarized as follows:
- Particular event CO represents the same event as the verb.
- It is always indefinite.
- It is obligatorily modified by an adjective.

Sailer’s (2010) account for particular event COCs is shown in (32). The shared tag [4] of the INDEX value of the verb and the INDEX value of the CO indicates that the verb and the CO denote the same event. By the value (-) of the Boolean feature DEF(INITE), the CO is specified to be an indefinite NP.

32. particular-event-coc lexical rule (part-event-coc-lr) (Sailer, 2010, p. 205)

In addition, Sailer considers this type of CO a predicative complement, as seen by the value (+) of the feature PRED (ICATIVE). It seems plausible to argue that COs of this type in NA are also predicative complements for the following reasons. The CO here shares the same argument (i.e., the subject) with the verb, which is a property of predicative NPs (Madkhali, 2017). To illustrate more, particular event COs denote events, and events are carried out by participants. In particular event COCs, the subject and the unexpressed subject of the CO are identical. Another reason for treating particular event COs as predicative NP is that they involve restrictions on determiners (Mittwoch, 1998). As discussed in section III, particular event COCs are restricted to constructions having the form of a verb + ADJ + CO, which means that this type of COC does not typically occur with determiners, such as demonstratives.

Having specified particular event COs to be predicative NPs, which are considered non-referential, the unavailability of being pronominalized has been accounted for since non-referential NPs cannot be pronominalized.

The aforementioned discussion on Sailer’s lexical rule of particular event COCs suggests that this analysis is applicable to particular event COCs in NA. However, the CO in this type is always modified by an adjective. Such a property is an important one that needs to be involved in this analysis.

To accommodate this, the analysis of adjuncts proposed by Sato and Tam (2008) will be employed here to stipulate the condition that a particular event CO in NA must be modified by an adjective. This analysis introduces the feature

ADJ (UNCT), which specifies the adjunct that modifies the HD-DTR (i.e., head daughter), into the VALENCE feature of the HD-DTR. Given this, the modified lexical rule of particular event COCs in NA will be as presented in (33).

33. part-event-coc-lr in NA

1 Sailer (2010) solved this problem using an independent principle, namely the Semantic Discernibility Principle, in which he stated that the semantic contributions of the daughters in a specific phrase must not be identical.
Applying the constraints in (30) and (33) to the sentence in (34) will give the structure shown in (35).

34. Hind ḫ[rkā-t rakā] serif
Hind ran.3fs running fast
Literally: ‘Hind ran a fast running.’

35. Hind ḫ[rkā-t rakā] serif
In HPSG, Arabic clauses where the subject precedes the VP are analyzed as instances of the phrasal type *hd-subj-ph* (head-subject-phrase), which simply consists of a VP HD-DTR and a subject (Althawab, 2022). In (38), this phrasal type is composed of two daughters: the VP HD-DTR ḫ[rkā-t rakā] serif, which is of the type *hd-comp-ph* (head-complement-phrase), and the NP subject Hind. The *hd-comp-ph*, in turn, consists of the HD-DTR ḫ[rkā-t ‘ran’ and the complement rakā serif ‘a fast running’. The complement rakā serif ‘a fast running’ is of the type *hd-adjunct-ph* (head-adjunct-phrase). It can be said that (35) contains the essential information of the structure of particular event COCs in NA.

Following the same approach, we may account for the other types of COCs with minor differences. For example, the concrete resultant COC in sentence (14), repeated here in (36), has the structure in (37).

36. l-bent ḥ[ať-a-t ḥ[ať-aʔ b-l-ĵeġtibar
DEF-girl mistake.3fs mistake in-the-exam
‘The girl made a mistake in the exam.’
The structure in (37) shows that the concrete resultant COC is more flexible than the particular event CO in that it can occur unmodified. In addition, the concrete resultant CO does not refer to an event but rather an object, as indicated by the value (x) of the INDEX feature. Another distinguishable property of concrete resultant CO is that it is a referential NP. Hence, the value of the PRED feature here is (-).

It appears plausible to argue that HPSG provides a useful analysis for COCs in NA. It allows us to catch the semantic and morphological cognateness between the verb and the CO by means of the structure-sharing feature. It also accounts for the fact that CO is a special kind of complement that is different from the ordinary direct object by specifying that the CO is a non-canonical complement that is a member of the ARG-ST but not a member of the COMP list.

V. CONCLUSION

This paper explores the syntactico-semantic properties of COCs in NA in general and the particular event COCs in particular. First, it illustrates the main properties that all COCs in NA share. Then, it offers a theory-neutral description of particular event COCs in NA. It also attempts to theoretically account for the main syntactico-semantic properties of COCs and particular event COCs using the framework of HPSG. We argue that COC consists of an intransitive verb that takes a non-canonical complement that is semantically and morphologically cognate to the verb. For the particular event COC, the paper shows that this kind of COC exhibits similar syntactico-semantic properties to those reported for COs that have event reading in the literature. This paper contributes to the topic of COs cross-linguistically and to the literature of Arabic in particular.

REFERENCES

It should be noted that in this structure, the PP b-l-ʔeχtibar ‘in the exam’ is an optional element that modified the whole VP rather than the CO alone, as is the case with the obligated modification in particular event COCs.
is an assistant professor at the Department of English Language and Translation, College of Arabic and Social Sciences, Qassim University, Saudi Arabia. He has a PhD in linguistics from the University of Essex, United Kingdom (2014). His research interest and publications are mainly in the field of syntax and syntactic theories.

Seham A. Alawadh is an M.A student of theoretical linguistics at Qassim University. Her research interests include syntax, semantics, and morphology.